Asymptotic behaviour of good systems of parameters of sequentially generalized Cohen-Macaulay modules

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sequentially Cohen-macaulay Modules and Local Cohomology

Let I ⊂ R be a graded ideal in the polynomial ring R = K[x1, . . . , xn] where K is a field, and fix a term order <. It has been shown in [17] that the Hilbert functions of the local cohomology modules of R/I are bounded by those of R/ in(I), where in(I) denotes the initial ideal of I with respect to <. In this note we study the question when the local cohomology modules of R/I and R/ in(I) hav...

متن کامل

A characterization of shellable and sequentially Cohen-Macaulay

We consider a class of hypergraphs called hypercycles and we show that a hypercycle $C_n^{d,alpha}$ is shellable or sequentially the Cohen--Macaulay if and only if $nin{3,5}$. Also, we characterize Cohen--Macaulay hypercycles. These results are hypergraph versions of results proved for cycles in graphs.

متن کامل

Sequentially Cohen-macaulay Edge Ideals

Let G be a simple undirected graph on n vertices, and let I(G) ⊆ R = k[x1, . . . , xn] denote its associated edge ideal. We show that all chordal graphs G are sequentially Cohen-Macaulay; our proof depends upon showing that the Alexander dual of I(G) is componentwise linear. Our result complements Faridi’s theorem that the facet ideal of a simplicial tree is sequentially Cohen-Macaulay and impl...

متن کامل

Lyubeznik Table of Sequentially Cohen-macaulay Rings

We prove that sequentially Cohen-Macaulay rings in positive characteristic, as well as sequentially Cohen-Macaulay Stanley-Reisner rings in any characteristic, have trivial Lyubeznik table. Some other configurations of Lyubeznik tables are also provided depending on the deficiency modules of the ring.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Kodai Mathematical Journal

سال: 2012

ISSN: 0386-5991

DOI: 10.2996/kmj/1352985455